Forschen • Ausbilden • Vernetzen
Für eine nachhaltige Bioökonomie

Forschen • Ausbilden • Vernetzen
Für eine nachhaltige Bioökonomie

Bio2 Publikationen


Filbig, M, Kubicki, S, Bator, I, Hausmann, R, Blank, LM, Henkel, M, Thies, S and Tiso, T (2023). Chapter 8 - Metabolic and process engineering on the edge—Rhamnolipids are a true challenge: A review. Biosurfactants. Soberón-Chávez, G., Academic Press: 157-181.  

Schonhoff, A., Stöckigt, G., Wulf, C., Zapp, P., Kuckshinrichs, W. (2023). Biosurfactants production with substrates from the sugar industry - environmental, cost, market and social aspects. RSC Sustainability, doi 10.1039/D3SU00122A



Schonhoff A., Ihling N., Schreiber A., Zapp P. (2022). Environmental Impacts of Biosurfactant Production Based on Substrates from the Sugar Industry. ACS Sustainable Chemistry & Engineering, 10, 9345-9358.

Weihmann, R, Kubicki, S, Bitzenhofer, NL, Domröse, A, Bator, I, Kirschen, L-M, Kofler, F, Funk, A, Tiso, T, Blank, LM, Jaeger, K-E, Drepper, T, Thies, S and Loeschcke, A (2022). The modular pYT vector series employed for chromosomal gene integration and expression to produce carbazoles and glycolipids in P. putida. FEMS Microbes 4.



Bongartz, P., Bator, I., Baitalow, K., Keller, R., Tiso, T., Blank, L. M., & Wessling, M. (2021). A scalable bubble-free membrane aerator for biosurfactant production. Biotechnology and Bioengineering, 114.



Bator, I. et al. (2020): Killing Two Birds With One Stone – Strain Engineering Facilitates the Development of a Unique Rhamnolipid Production Process. Frontiers in Bioengineering and Biotechnology 8:899.

Bator, I., et al. (2020): Comparison of three xylose pathways in Pseudomonas putida KT2440 for the synthesis of valuable products. Front. Bioeng. Biotechnol. 7: 1-18.

Biselli, A. et al. (2020): Development, evaluation, and optimisation of downstream process concepts for rhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids. Separation and Purification Technology, 117031.

Blesken, C. et al. (2020): Genetic cell-surface modification for optimized foam fractionation. Frontiers in Bioengineering and Biotechnology 8

Kubicki, S. et al. (2020): A Straightforward Assay for Screening and Quantification of Biosurfactants in Microbial Culture Supernatants. Frontiers in Bioengineering and Biotechnology 8:958.

Molitor, R., et al. (2020). "Agar plate-based screening methods for the identification of polyester hydrolysis by Pseudomonas species." Microb Biotechnol 13(1): 274-284.

Müntjes, K., et al. (2020): Establishing Polycistronic gene expression in the model microorganism Ustilago maydis. Frontiers in Microbiology 11:1384

Stoffels, P., et al. (2020): Complementing the intrinsic repertoire of Ustilago maydis for degradation of the pectin backbone polygalacturonic acid. Journal of Biotechnology 307:148-163.

Tiso, T. et al. (2020): Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida. Frontiers in Bioengineering and Biotechnology 8: 976

Tiso, T., et al. (2020). "A Combined Bio-Chemical Synthesis Route for 1-Octene Sheds Light on Rhamnolipid Structure."  10(8): 874.



Domröse, A., et al. (2019) Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes. Sci Rep 9, 7028 DOI: 10.1038/s41598-019-43405-1

Kubicki, S., et al. (2019). "Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications." Marine drugs 17(7): 408

Otto, M., et al. (2019). Targeting 16S rDNA for Stable Recombinant Gene Expression in Pseudomonas. ACS Synthetic Biology 8(8): 1901-1912



Bollinger, A., et al. (2018). The biotechnological potential of marine bacteria in the novel lineage of Pseudomonas pertucinogena. Microbial Biotechnology 13:19-31.

Hage-Hülsmann, J., et al. (2018). Natural biocide cocktails: Combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS One 13(7): e0200940

Klein, A. S., et al. (2018). "Cover Feature: Preparation of Cyclic Prodiginines by Mutasynthesis in Pseudomonas putida KT2440." ChemBioChem 19(14): 1462-1462.