2023
Schonhoff, A., Stöckigt, G., Wulf, C., Zapp, P., Kuckshinrichs, W. (2023). Biosurfactants production with substrates from the sugar industry - environmental, cost, market and social aspects. RSC Sustainability, doi 10.1039/D3SU00122A
2022
Schonhoff A., Ihling N., Schreiber A., Zapp P. (2022). Environmental Impacts of Biosurfactant Production Based on Substrates from the Sugar Industry. ACS Sustainable Chemistry & Engineering, 10, 9345-9358.
Weihmann, R, Kubicki, S, Bitzenhofer, NL, Domröse, A, Bator, I, Kirschen, L-M, Kofler, F, Funk, A, Tiso, T, Blank, LM, Jaeger, K-E, Drepper, T, Thies, S and Loeschcke, A (2022). The modular pYT vector series employed for chromosomal gene integration and expression to produce carbazoles and glycolipids in P. putida. FEMS Microbes 4.
2021
2021). A scalable bubble-free membrane aerator for biosurfactant production. Biotechnology and Bioengineering, 1– 14.
, , , , , , & (
2020
Bator, I. et al. (2020): Killing Two Birds With One Stone – Strain Engineering Facilitates the Development of a Unique Rhamnolipid Production Process. Frontiers in Bioengineering and Biotechnology 8:899.
Bator, I., et al. (2020): Comparison of three xylose pathways in Pseudomonas putida KT2440 for the synthesis of valuable products. Front. Bioeng. Biotechnol. 7: 1-18.
Biselli, A. et al. (2020): Development, evaluation, and optimisation of downstream process concepts for rhamnolipids and 3-(3-hydroxyalkanoyloxy)alkanoic acids. Separation and Purification Technology, 117031.
Blesken, C. et al. (2020): Genetic cell-surface modification for optimized foam fractionation. Frontiers in Bioengineering and Biotechnology 8
Kubicki, S. et al. (2020): A Straightforward Assay for Screening and Quantification of Biosurfactants in Microbial Culture Supernatants. Frontiers in Bioengineering and Biotechnology 8:958.
Molitor, R., et al. (2020). "Agar plate-based screening methods for the identification of polyester hydrolysis by Pseudomonas species." Microb Biotechnol 13(1): 274-284.
Müntjes, K., et al. (2020): Establishing Polycistronic gene expression in the model microorganism Ustilago maydis. Frontiers in Microbiology 11:1384
Stoffels, P., et al. (2020): Complementing the intrinsic repertoire of Ustilago maydis for degradation of the pectin backbone polygalacturonic acid. Journal of Biotechnology 307:148-163.
Tiso, T. et al. (2020): Integration of Genetic and Process Engineering for Optimized Rhamnolipid Production Using Pseudomonas putida. Frontiers in Bioengineering and Biotechnology 8: 976
Tiso, T., et al. (2020). "A Combined Bio-Chemical Synthesis Route for 1-Octene Sheds Light on Rhamnolipid Structure." 10(8): 874.
2019
Domröse, A., et al. (2019) Pseudomonas putida rDNA is a favored site for the expression of biosynthetic genes. Sci Rep 9, 7028 DOI: 10.1038/s41598-019-43405-1
Kubicki, S., et al. (2019). "Marine Biosurfactants: Biosynthesis, Structural Diversity and Biotechnological Applications." Marine drugs 17(7): 408
Otto, M., et al. (2019). Targeting 16S rDNA for Stable Recombinant Gene Expression in Pseudomonas. ACS Synthetic Biology 8(8): 1901-1912
2018
Bollinger, A., et al. (2018). The biotechnological potential of marine bacteria in the novel lineage of Pseudomonas pertucinogena. Microbial Biotechnology 13:19-31.
Hage-Hülsmann, J., et al. (2018). Natural biocide cocktails: Combinatorial antibiotic effects of prodigiosin and biosurfactants. PLoS One 13(7): e0200940
Klein, A. S., et al. (2018). "Cover Feature: Preparation of Cyclic Prodiginines by Mutasynthesis in Pseudomonas putida KT2440." ChemBioChem 19(14): 1462-1462.